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Abstract
Up to now the general approach of constructing evolution differential equations
to describe random walks on fractals has not succeeded. Is this because the
true probability density function is inherently fractal? When plotted in the
appropriate similarity variable, we find a cloud which is not too smooth. Further
investigation shows that this cloud has a structure that might be overlooked if one
is looking for the usual single-valued probability density function. The cloud
is composed of an infinite family of smooth fibres, each of which describes the
behaviour of the walk on an infinite echo point class. The fibres are individually
smooth and so are naturally amenable to analysis with differential equations.

PACS numbers: 0545D, 6610C, 0540F

1. Introduction

Even though they are not differentiable, fractals can arise from differential equations. The
Lorenz attractor is a well known example. Do differential equations arise from fractals?
Clearly from fractals alone the answer is no, however the random walks on fractals, frequently
used to provide a model for anomalous diffusion, are a different matter. So can differential
equations arise from dynamics on fractals?

A number of attempts [1–5] have been made to provide differential or integro-differential
equations to explore anomalous diffusion, mostly as a random walk on a Sierpinski gasket.
These have only been partially successful. Our findings [5] suggest that alternative strategies
may be needed. This letter presents one possible alternative.

The diffusion or heat partial differential equation has long been used to study random
walks on Euclidean lattices. Several papers [1–5] attempt to generalize this relationship to
find evolution equations which describe the statistical behaviour of random walks on fractals.
This is interesting because of its link to anomalous diffusion. These papers are considered
in [5] and their predictions are compared with the statistical behaviour observed from a random
walk on a Sierpinksi gasket. The predicted behaviours each capture something of the observed
statistical behaviour, but none captures it all.
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Figure 1. 7th iteration of the Sierpinski gasket. Note the points x0 and y0 at the same radius, and
the dashed line denoting the ray for figure 2.

The problem might not simply be that the correct evolution equation has just not yet been
found—it could be much more fundamental. The sticking point could be that fractals are, by
definition, ‘spiky’ or ‘rough’. As a result they, or walks upon them, do not lend themselves to
description by differential or integral equations, which require a certain degree of smoothness
to work. A way around this rather obvious difficulty is to look at some type of averaged
quantity—but what type of averaging? For a random walk on a fractal, for instance, the
number of walkers that have travelled a radial distance of r from the starting point in a time t ,
is collected to obtain the probability density function P(r, t). This type of angular averaging
does not impart enough smoothness [1, 5], so P(r, t) remains fractal like. We do not know
the dynamics of the random walk well enough to perform the kind of physically meaningful
averaging needed for smoothness. So far, averaging, as a concept, seems at its best to be ad
hoc.

In this letter we return to the example of a random walk on a relatively simple fractal—the
Sierpinksi gasket—to experimentally determine more about the dynamics of random walks
on fractals. We use the natural similarity group of the walk to find interesting structure
in random-walk behaviour not previously documented. We describe the structure observed
from that viewpoint in terms of ‘muscles’ and ‘fibres’. These ‘fibres’, which turn out to be
smooth functions, might provide the solution to the long-standing problem of determining
some evolution integro-differential equation which describes random walks on fractals.

2. Numerical simulation

We present results obtained in studying a random walk on a Sierpinksi gasket. Our numerical
method follows that of [6]. We construct finitely generated Sierpinksi gaskets of depth 10–12
and then inject a walker into each of them at the centre of the bottom face of the biggest triangle
(see figure 1). Lattice sites are located at vertices. At each time step a walker is equally likely
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Figure 2. The computed GDF data for all points of the gasket along the ray indicated in figure 1.

to move to any of the lattice sites joined to its present location. These moving rules are encoded
using a master equation formalism.

How do we display the data so obtained? We could assign cartesian coordinates to each
vertex on the finitely generated gasket and plot P(x, y, t), the probability to find a walker at
the point (x, y) at time t . We hope that P is one element in a sequence of functions, defined for
each iteration depth, with the limit being a map F ×R+ → R+, where F is the fractal set of the
points contained in the Sierpinski gasket. While topological ideas of continuity could be used
to describe this mapping, this is not the approach typically adopted by workers in this area.

The traditional quantity to be measured is the radial distance from the starting point
travelled by a walker. Typically the distance from a site to the injection point is calculated and
the probability distribution at points along a fixed representative ray from the injection point,
is plotted as a function of r . This new simpler probability is a map R+ ×R+ → R+. However,
because the fractal is not isotropic about the origin the function corresponding to one particular
ray will differ from those corresponding to other rays. That means that this common practice
does not produce a single-valued function. We accept these resulting multi-valued functions
in order to conform to standard practice. To simplify plotting and comparisons, we may use
the similarity solution method expounded in [7] and [5], and note that this method suggests
for any PDF with the correct scaling

P(r, t) = t
−df
dw G(η) (1a)

where df is the fractal dimension, dw is the walk dimension, and

η = r

t
1

dw

. (1b)

It is better to plot G(η) (which we call the GDF) than P(r, t): (1a) tells us how to create
P(r, t) from G(η), G(η) has all the information we require, and it is easier to look at a 2D
rather than a 3D plot. There is also a deeper advantage to considering G(η) which will become
evident later.

An example of such a GDF plot can be constructed along the horizontal ray indicated by
the dashed horizontal line seen in figure 1. This is similar to the one used in [1]. Figure 2 is
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Figure 3. The computed GDF data for all points of the whole gasket. This ‘cloud’ contains the
points plotted in figure 2 as a subset.

the resulting GDF plot, which exhibits the indicated multi-valued character in the form of a
cloud of points. That is the data points do not fall onto a simple curve, instead they appear
to fall on a ‘muscle’-like cloud. It should be noted that this observation is consistent with the
similarity group as the entire cloud scales in accordance with that group. But, if our objective
is the creation of an evolution equation for G, this observation is disappointing as it suggests
either the presence of a solution which appears extremely oscillatory or even fractal. But the
situation is actually worse than these as many values of η have more than one data value!
This is in contrast to the normal single-valued theoretical GDFs arising from the differential
equations designed to model this process [5].

This is perhaps the most compelling reason why a direct treatment of these types of
densities has not worked. Of course one can imagine that these multiple values and wild
fluctuations can be averaged away, but that process begs several questions. The first is
why an average is justified in the first place—there is no significant observation error here.
Moreover no physical basis has been proposed to expect that instruments will average over the
multiple values in practice. Then the second question is what form would any such proposed
process of averaging take. A similar set of questions arise for the problem of averaging over
initial conditions. We agree that investigating the effect of such averaging is interesting, but
concentrate here on studying the dispersion of a point source of walkers. We are led to study this
more restrictive problem by the fact that existing PDE-based models of anomalous diffusion
have failed to explain simulations [5]. It is by no means clear how to answer these questions,
so we adopt a different approach.

It is motivated by a key observation—the muscle-like cloud appears to be the assembly
of a number of curves on which data fall. We name these curves ‘fibres’, in keeping with our
‘muscle’ analogy. In the next section the ‘fibres’ will be explained in terms of sets of ‘echo
points’ induced by the similarity group described in (1b). It will be shown that use of this ‘echo
point set’ will allow the production of smooth GDF curves whose physical interpretation is
unambiguous.

Figure 3 shows data from all points computed on the fractal, which is in effect the plotting
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Figure 4. A few members of three different classes of echo points {xk}, {zk} {ẑk} are represented
on a gasket schematic. The xk are situated along a symmetry line, while the points zk and ẑk are
reflections of each other about that line.

of data along all rays. Clearly the structure of a muscle-like cloud and the fibrous appearance
is fully retained although it is somewhat thickened. That is because the fibres from figure 2
are necessarily a subset of those in figure 3. The structure of the muscle in figure 3 will be
discussed further below.

In passing we note that the envelope of the cloud in figures 2 and 3 seems to display
‘wiggles’ for small η. In fact these wiggles turn out to be intrinsic to individual fibres and they
appear to be log-periodic in η. Similar sorts of behaviour have been noted in [8–10].

3. Fibres

To understand the fibres, we use the idea of fixing a reference point y on the fractal and sampling
the PDF there over time. In the η, or similarity space, this corresponds to visiting all values of
η corresponding to that reference point over different times. In this way we can associate an
entire Gy(η) curve—which turns out to be one of the fibres in the G(η) cloud—with each point
on the fractal. These curves are then shown to be continuous and smooth. In the following we
skip the index ‘y’ at Gy(η).

What we shall now show is that some pairs of points on the fractal cast up identical G(η)

curves, while other pairs represent different curves. Our description depends on figures 1
and 4.

To begin, focus attention, for example, on the pair of points x1 and x2 in figure 4. The
point x1 is at the apex of a triangle with x2 at its base. x2 is also at the apex of a corresponding
triangle half as large. If figure 4 was not just a schematic, all of the triangles of the gasket
in the neighbourhood of x2 would be half of the corresponding ones in the neighbourhood of
x1. All the distances between points are thus scaled by a factor of 2. As this is exactly what
the similarity transformation (1b) describes. Using (1b) we can quickly see, recalling that
dw = ln 5

ln 2 , that

η(x1, 5t) = η(x2, t).

This tells us that every point in the η space induced by x2 also shows up in the η space induced
by x1. Furthermore, the fact that x1 and x2 play identical roles, up to a change of scale, in the
gasket implies that the similarity scaling argument for the PDFs evaluated at those points also
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Figure 5. Fibre G’s corresponding to {xk} (diamonds) and {zk} (stars) echo classes.

applies, so that

P(x1, 5t) = t
df
dw P(x2, t).

Because of this,

G(η1,5t ) = G(η2,t )

where

ηk,t = xk

t
1

dw

.

Therefore the GDF created by waiting at the point x1 and monitoring the PDF is identical to
that created by waiting at point x2. Furthermore, on the solid line, the point x3 and all the
other implied sequential points, xk , which are suppressed in the figure 4 schematic for clarity,
generate the same GDF. We call a set of points like (xk)

∞
k=0 an echo class, while the sequence

of points (zk)
∞
k=0, similarly represented in figure 4, constitutes a different echo class.

We name the GDF induced by a given echo class a fibre. The fibres corresponding to the
xk and zk are shown in figure 5. We see there that for the computation not every pair of points
has the same G(η) function. It is easy to see that this is true in principle too. Consider the
points x0 and y0 in figure 1. Since x0 and y0 are the same distance from the origin, at any given
time t�, η(x0, t

�) = η(y0, t
�). However, P(x0, t

�) is generally not the same as P(y0, t
�). This

proves that these two points induce different GDF curves. Note that members of two different
echo classes can for symmetry reasons yield the same fibre. See, for example, the points ẑk

and zk in figure 4.
The points that are plotted in the G(η)-plots in this computational scheme correspond

to every one hundredth time step, as little happens during the intervals between. There is,
however, an exception. During the first interval of 100 time steps, transients occur in the
simulation as the probability fluctuates on short times, reflecting the finite iteration depth. It
should be emphasized that plots of G(η) are in principle time invariant, depending on the
similarity variable η and not t . Initial transients in this sense are only a reflection of the
departure of the model lattice from the true fractal. In figure 6 a fibre and data corresponding
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Figure 6. Transients for x6 (stars) and x7 (diamonds) relaxing to the fibre created by the set {xk}
(represented by the solid curve). Since x7 is nearer to the starting point in figure 4, probability
arrives earlier there, which results in a larger deviation from the fibre for small times.

to particular echo points, within such transient intervals of the first 100 time steps, are plotted
together.

To interpret this plot, it is important to note that, for r fixed, η decreases with increasing t .
Thus the transients die out as the sequence of points advances leftward. Note that these
sequences clearly relax to the fibre (represented by a solid curve) confirming that fibres have
a computationally invariant quality. They even relax to the wiggles, indicating that the fibre’s
wiggles should not be confused with transient fluctuations but instead are real features of the
invariant function that the computed sequence approaches. In this regard, it should also be
emphasized that in figure 5 there are 100 time steps between data for the whole fibre, while
there is only one time step between data points for the transient sequences in figure 6.

The fibre exists in principle from η equals zero to infinity. However, in the calculation
all sequences for each individual gasket point begins at finite η and ends before zero. That
is because the practical computation has a lower length scale and runs for a finite number of
time steps. For any given member of an echo class, matching the fibre over a wider interval
requires longer times or smaller scales. Smaller scales implies more points between starting
point and the given member in question. However, smaller scales are unnecessary in practice
as the echo points permit the fibre to be determined over the whole range of interest by simply
choosing appropriate points in the same echo class having larger values of r .

After establishing the nature of the fibres as continuous single-valued functions that are
invariant across an echo class, we can return to figure 3 to consider the envelope defining the
muscle due to the behaviour of the fibres. Careful examination shows that no single fibre
corresponds to the envelope, but that the envelope is instead formed by segments of successive
fibres. Furthermore the wiggles evidently cause some fibres to touch the envelope on both
sides of the muscle.

These fibres, which are continuous functions, and the muscle defining a family of functions,
are natural objects to examine with differential equations, in contrast to the fractal PDFs, which
have been unsuccessfully treated previously with them. In a future paper we will investigate
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the possibility that the fibres are described by ordinary or extraordinary (i.e. fractional) DEs,
and attempt to retrieve the evolution equation for the GDF of random walkers on a fractal in
that way.

This new approach toward diffusion on fractals in terms of fibres also introduces a new
approach to averaging for PDFs. A computation of a single ‘collective’ GDF may be in terms
of an average of the point cloud, which will be a weighted average of the fibres. That is in
G − η space averaging is implicitly over functions of η. A density of states calculation which
explicitly considers the relative importance of the various echo point sets to the construction
of the fractal object will be needed. We will also investigate this question in a future paper.
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